USE OF A RING PROBE TO DETERMINE THERMAL
CONDUCTIVITY COEFFICIENTS
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A method for using a constant-power ring probe to determine thermal conductivity
coefficients is considered.

The transient constant-power cylindrical (linear) probe method is often used to deter-
mine thermophysical characteristics of liquids, gases, solids, and dispersed materials [1,
2]. The thermal conductivity coefficient A of the material being studied is determined from
the rate at which the cylindrical probe, used as both a heater and a temperature-sensitive
element, heats up. At probe heating times longer than the characteristic time, which is
dependent on heater radius, the probe heating rate, defined as the derivative of probe tem-
perature with respect to the logarithm of time, will be constant. The thermal conductivity
coefficient is then calculated from the expression

b= et 1= 4By . (1
The measurement time is chosen within the limits tpin < t < tpax. The quantity tpip is
determined by the thermal contact between probe and medium, while tpgy is determined by the
length of the probe or thickness of the specimen studied.

To perform such measurements, especially for determination of thermophysical character-
istics of dispersed mediums such as soils, it is convenient to use a constant-power probe of
~ annular form [3]. Such a probe configuration allows performing local measurements of thermal
characteristics and has a number of technical and construction advantages as compared to

the cylindrical form. :

To justify the validity of use of such a probe we will consider the problem of the tem~
perature field of a constant-power heat source in the form of a circle of radius R located
within a homogeneous and isotropic medium with thermal diffusivity a and thermal conductivity
A. We choose the coordinate system such that the ring axis coincides with the plane XOY.

Using cylindrical coordinates we may write the temperature of an arbitrary point within
the medium with an instantaneous source in the form of a circle of radius R, acting in the
plane z = 0 at time t = 0 in the form [4] '
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If the. ring probe is used as both heater and temperature sensitive element, we will be
concerned with the change in temperature of the medium at the probe surface with heater
radius rp during heating. Denoting rp/R = 8, u = 1/(2Fo), with consideration of the fact
that r = rh + R and z = 0, we obtain

: 5\ -
0 W= V 2znu exp r-—-u T+6+4 —§——) Lfu{l + 8. (3)
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Since § €1 (in practice § < 10-*) we obtain an approximate expression for B, (u):
Q 5
O (u) = —=— } 2nu exp{—u) [, (1). :
e ) ypvy 1 P ) Lo (1) 4)

It can easily be shown that at large values of u (i.e., small t or large R) Eq. (3)
tends to
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Fig. 1. Rate of medium temperature change at
surface of constant-power probes: 1) ring
probe (theory); 2) cylindrical probe (theory);
experimental curves for ring probes of various
radii: 3) R =10 mm; 4) 8; 5) 4.
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i.e., it coincides with the temperature of the medium at the surface of an instantaneous
linear source [4].

Q
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Equatlon (3) or (4) can be con51dered (at Q = 1) as a Green's function characterizing
the ring probe located in a medium with known thermophysical characteristics. When a con-
tinuous ring source is used, an expression for temperature at its surface@r h (t) can be ob-
tained in terms of a Duhamel integral, considering the initial temperatures of probe and
medium identical”and equal to zero. Then for ®r b (t) we can write:

t ’ . :
8 = oy Q) h(t—1)dt',
where @(t') is a function describing the quantity of heat supplied to the probe over time;
h(t — t') is a Green's function, the form of which is defined by Eq. (4).

For a constant—power ring probe, i.e., at ¢(t') = Q = const, introducing the integration
variable u' = R*/2a(t — t'), we obtain ‘

' r exp(—u') yra= 7 rom gt
0 = Q Vonu' I,(u")du'.
;.h yory " o(#) (6)
‘ Y v
It is interesting to compare the heating rates of ring and cylindrical probes located
in one and the same medium. For the quantity d6c h/du we can write :

N L

e,

, : : _ du 4nh  u
while for d8r,h/du, from Eq. (6) we have »
| . dBn Q_ ep(—4) y5—)
3 . Sma Iy (u).
| du o oeh@
Then from.their ratio L(u) = d8 /dB,,n We obtain
L{u)y= V2nu exp(—u) I, (). N

The graph of L versus u or Fo can be displayed most conveniently in semilogarithmic co-
ordinates (Fig. 1, curve.l). As has already been noted above, the heating rateyofa constant-
power cy11ndr1ca1 probe is a straight line parallel to.the absclssa (curve 2).

- Analysis reveals that the heating rate of a constant-power ring probe at sufficiently’
‘high u values (or small t) exceeds the cyllndrlcal probe heating rate only insignificantly
(L<.1.05 up to Fo<< 0,16). After reaching a maximum value the ring probe heating rate
begins to drop quite rapidly, tending to zero.
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The condition for maximum L(u) can be written in the form
1

u=m,
Iy (v)

which corresponds to Fo = 0.633, with L = 1.175.

To verify the results of this analysis, an experiment was formulated with ring probes
of various diameters located in paraffin (@ = 0.150-10"° m*/sec, A = 0.123 W/(m-°K)) Figure
1 shows normalized experimental heating rate curves A o7 x for probes of various radius. The

A(Bixh values are defined by the difference between probe temperatures at times t, and t,
3

(t2/t, = const) in a manner similar to that used in determining the heating rate of a cylin-

drical probe [5]. The quantity AED?Xh was normalized to its maximum value, which was taken
Hd

equal to 1.175.

The satisfactory agreement between theoretical and experimental data should be noted,
especially for Fo z= 0.5. Deviation of the experimental curve from theory at small Fo values
(the smaller the ring radius, the greater the deviation) can be explained by the finite time
required for exit of the thermal wave into the medium (paraffin), the value of which depends
on the ratios of the thermophysical characteristics of probe, insulating material, and medium
under study, as well as the nonideal thermal contact between probe and medium. In. our case,
the ring was a tungsten wire ~50 um in diameter, surrounded by an Alundum sleeve with outer
diameter of 1 mm for electrical insulation.

To determine the time tpin one can use estimates obtained in [5] for a cylindrical probe
with imsulating sleeve. Approximate calculations show that for a ring probe with Alundum
insulation (A = 2 W/(m*deg K)) to an accuracy of 5% tpmin is equal to ~20 sec, which is in.
agreement with experimental values.

Thus, the analysis performed shows that a constant-power ring probe can be used to
determine thermal conductivity of a medium, using the measurement technique applied in the
case of a cylindrical probe and based on Eq. (1). However, in contrast to the cylindrical
probe, more severe restrictions must be placed on the maximum value of Fo, and thus on limi-
ting measurement time tpax, as well as on dimensions of the ring probe. The maximum value
of Fo is. determined by the permissible deviation of the function L(u) from unity and is thus
dependent on the tolerable uncertainty of the measurement. In practice, as was indicated
above, if L(Fo) << 1.05, the value of Fo should not exceed 0.16.

NOTATION

A, thermal conductivity; Q, power emitted into medium per unit probe length during
heating; 6y, m},GC n medium temperature at surface of instantaneous ring source and of ring
and cylindrical constant—powar heaters; t, time-measured from heater turn-on; tmin» Cmaxs
minimum and maximum measurement times defining the measurement time interval over which the
rate of change of medium temperature can be regarded as linear to a given accuracy; a, ther-
mal diffusivity; R, radius of constant-power ring probe; r, z, coordinates of cylindrical
coordinate system; rh, heater radius; Fo = qt/R®, Fourier number; u = 1/(2Fo); I,, I., modi-
fied Bessel functions with imaginary argument; L{u) = derﬁu@c!ﬁAefﬁl difference between probe
temperatures at times t,, t;. o '
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